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Executive Summary
For more than a century, federal land management policies 
favored fire exclusion. As a result, live and dead fuels became 
profoundly more abundant in the fire-dependent forest 
landscapes of western North America. Trees and shrubs filled in 
gaps in the forest and expanded into neighboring meadows. Dead 
trees, needles, cones, and branches piled up on the forest floor. 

Combined with a rapidly warming climate, this 
accumulation of fuel contributes to today’s increasingly 
challenging wildfire seasons. Climate- and wildfire-adaptation 
strategies for fire-dependent forests promote the use of fuel 
reduction techniques, including mechanical thinning, prescribed 
fire, and managed wildfire. These techniques have repeatedly 
proven effective at mitigating fire intensity, even during 
extreme fire weather. 

Ecologically based fuel reductions go beyond simple 
uniform fuel load reduction to incorporate a vast range of 
spatial patterns in forest structure and composition that 
historically or currently demonstrate resistance and resilience to 
fire and drought. These fuel reductions increase the likelihood 
of conserving and restoring ecological, social, and cultural 
values imperiled by more than a century of fire exclusion. As 
with any credible management strategy, ongoing evaluation and 
refinement of implementation and effectiveness are essential. 
This is particularly true given the dynamic nature of today’s 
rapidly warming climate. 

Recent literature reviews and syntheses provide valuable 
references for land management practitioners and stakeholders 
engaged in designing, evaluating, and implementing 
scientifically credible wildfire- and climate-adaptation 
strategies. These syntheses are supported by thousands of peer-
reviewed articles that evaluated the benefits and constraints of 
restoring fire to fire-dependent forest landscapes. This working 
paper summarizes key insights from the review of studies, 
described in detail below, that documented unprecedented, 
human-caused fire exclusion and its impacts on fire-dependent 
forest landscapes in western North America.

Introduction
Wildfire seasons are growing longer and more challenging 
as the climate continues to warm and droughts lengthen and 
intensify. Whether those fires encroach on our doorsteps or 
smoke from thousands of miles away reduces our air quality, 
more and more of us are experiencing first-hand the benefits 
and limitations of forest and fire management. To aid the 
ongoing development of policy and management intended 
to mitigate wildfire intensity, a team of forest and fire 
ecologists from leading research universities, conservation 
organizations, and government laboratories collaborated 
to review and synthesize the scientific literature about 
fuel treatments in fire-dependent forests of western North 
America (Figure 1). 

In three peer-reviewed syntheses (Hagmann et al. 2021; 
Hessburg et al. 2021; Prichard et al. 2021), this team addressed 
key questions about the advisability of ecologically based fuel 
reductions to better adapt forest landscapes and communities to 
wildfire and a warming climate. Ecologically based management 

of fire-dependent forest landscapes seeks to conserve and restore 
ecosystem functions by restoring and maintaining fuel loads 
at levels that have demonstrated resistance to fire and drought. 
Management implications and recommendations from these 
syntheses have been summarized in a fact sheet,1 story map,2  and 
policy brief.3

This working paper reviews the impacts of more than 
a century of unprecedented, human-caused fire exclusion 
on the structure and composition of fire-dependent forest 
landscapes. By the late 19th century, the decimation of 
Indigenous populations, intensive livestock grazing, road 
building, and the suppression of fires and Indigenous burning 
practices had all contributed to a notable reduction in fire 
frequency and extent (Figure 2). The science supporting this 
summary is based on more than a century of observation and 
documentation and is reviewed in greater detail by Hagmann 
et al. (2021).

Before the current era of fire exclusion, fire regimes 
maintained multi-scale resistance to fire and drought as well as 
other functions of fire-dependent forest ecosystems. Fire kills 
trees and consumes forest fuels. Thus, the presence or absence 
of fire influences the abundance, distribution, structure, and 
composition of forests and forest fuels. When fire is excluded 
from frequent-fire ecosystems, tree density increases; the 
proportion of fire-intolerant species increases; and surface, 
ladder, and canopy fuels accumulate. These widespread 
changes associated with fire exclusion provide the ecological 
basis for fuel reductions designed to restore greater resistance 
and resilience (Box 1) to fire and drought. 

Combined with a rapidly warming climate, 
uncharacteristically dense and extensive forest cover contributes 
to today’s uncontrollable, peak-season wildfires. Prior to 
European colonization, abundant low- to moderate-severity fire 
(Box 1) limited the extent and density of forest cover and the 
abundance of forest fuels. High-severity fires are also essential 
elements of fire-dependent forest landscapes, and some high-
severity fire effects occur in essentially all fires, even those that 
are predominantly low severity. However, prior to the current era 
of fire exclusion, abundant low- to moderate-severity fire limited 
the extent, patch size, and location of high-severity fire effects. 

For more than a century, modern wildfire management 
sought to extinguish essentially all fire starts. The absence 
of fire provided opportunities for abundant tree recruitment, 
particularly on more productive sites and during wet periods. 
Over time, forests filled in with trees and expanded into openings 
and meadows (Figure 3 and cover photo). This increase in 
forest density and extent contributed to the degradation of fire-
dependent forest and nonforest ecosystems and increased the 
homogeneity of landscape conditions (Figure 4). The loss of 

1 Fact Sheet: Adapting western North American forests to climate change 
and wildfires: Ten common questions. Sponsored and hosted by Northern 
Arizona University: Ecological Restoration Institute. https://cdm17192.
contentdm.oclc.org/digital/collection/p17192coll1/id/1102/rec/6

2 Adapting western US forests to climate change & wildfires: Ten common 
questions. Sponsored and hosted by Sustainable Northwest. https://
storymaps.arcgis.com/stories/64f55848f690452da6c58e5a888ff283

3 Climate Change and Western Wildfires: The Science Supports Restoration 
with Climate Adaptation. Sponsored and hosted by Northern Arizona 
University: Ecological Restoration Institute. https://cdm17192.contentdm.
oclc.org/digital/collection/p17192coll1/id/1103/rec/2

https://cdm17192.contentdm.oclc.org/digital/collection/p17192coll1/id/1102/rec/6
http://archive.library.nau.edu/cdm4/document.php?CISOROOT=/cpa&CISOPTR=57641&REC=2
https://storymaps.arcgis.com/stories/64f55848f690452da6c58e5a888ff283
https://cdm17192.contentdm.oclc.org/digital/collection/p17192coll1/id/1102/rec/6
https://cdm17192.contentdm.oclc.org/digital/collection/p17192coll1/id/1102/rec/6
https://storymaps.arcgis.com/stories/64f55848f690452da6c58e5a888ff283
https://storymaps.arcgis.com/stories/64f55848f690452da6c58e5a888ff283
https://cdm17192.contentdm.oclc.org/digital/collection/p17192coll1/id/1103/rec/2
https://cdm17192.contentdm.oclc.org/digital/collection/p17192coll1/id/1103/rec/2
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Figure 1. Forest landscapes of western North America span broad climate gradients as reflected in the amount of moisture available to trees in summer 
months (a). We used existing ecoregional classifications to roughly indicate the area of fire-dependent forest landscapes; nonforest and other forest types 
are masked out (a). We classified forest types across this gradient as either cold, moist, or dry (b). Cold, moist, and dry forests may share the same fire 
regime group (FRG) class (c). FRG I: fire return interval ≤ 35 years, low and mixed severity; FRG III: fire return interval 35–200 years, low and mixed severity; 
FRG IV: fire return interval 35–200 years, replacement or high-severity; FRG V: fire return interval >200 years, any severity. Portions of the study area that 
extend into Mexico and Canada are not shown in b and c because Landfire data are not available for these regions. Data sources are: a) Hogg’s Climate 
Moisture Index (Hogg 1997) from ClimateWNA (Hamann et al. 2013, climatewna.com), The Nature Conservancy Terrestrial Ecoregions (geospatial.tnc.org) 
for parts of Washington and southern BC, [K1] and EPA Ecoregions of North America (epa.gov/eco-research/ecoregions-north-america; and b,c) Landfire 
(Rollins 2009, landfire.gov).

Figure 2. By the late 19th century, area 
burned had decreased substantially across 
western North America. This regionwide 
decrease in fire was recorded by trees on 
more than 800 forest and woodland sites, 
the largest network of tree-ring-based fire-
scar chronologies in the world. Following 
expansion of colonization by Europeans, 
intensive livestock grazing, decimation of 
Indigenous populations, and suppression 
of Indigenous burning and other fires, the 
influence of fire was essentially absent 
from landscapes where it had historically 
been abundant. Reprinted from Swetnam 
et al. (2016) with the author’s permission.

http://climatewna.com
http://epa.gov/eco-research/ecoregions-north-america
http://landfire.gov
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patchiness and multi-aged forest cover historically maintained 
by recurring and overlapping fires increases the likelihood of 
extensive high-severity fire- and drought-related mortality which 
would reinforce this homogeneity. Increased evapotranspiration 
caused by denser and predominantly younger forests can divert 
water from downslope terrestrial and aquatic ecosystems and 
increase vulnerability to drought stress or conversion from 
wetter to drier ecosystem types. Thus, nonforest ecosystems (i.e., 
herbland/grassland, shrubland, woodland, and, often, open-
canopy forest) may also be directly or indirectly impacted by fire 
exclusion. 

Numerous regional syntheses have summarized and 
interpreted more than a century of research and observation 
documenting these and other changes to fire regimes, forests, 
and landscapes caused by a deficit of low- to moderate-severity 
fire (Table 1; page 9). As reviewed by Prichard et al. (2021), 
where pre-fire exclusion conditions existed or were restored, the 
preponderance of evidence documented greater resilience and 
resistance to contemporary drought and fire. Research published 
even more recently continues to document these benefits as 
management approaches are refined, the climate continues to 
warm, and fires and droughts intensify.4 Thus, understanding 
the types and extent of change that occurred in dry, moist, and 
cold fire-dependent forests (Figure 1, Box 1) during more than a 
century of fire exclusion helps us adapt forests and communities 
to current climate conditions as well as to drought and fire.

Evaluating Changes Associated with 
Fire Exclusion
In regional syntheses, researchers have integrated mounting 
evidence of fire exclusion as a driver of change to ecosystems 
and their functions (Table 1). These syntheses draw on more 
than a century of evaluation and observation of fires; fire 
regimes; and forest and landscape structure, composition, and 
function — including response to disturbance. Hagmann et 
al. (2021) focused on key elements of this vast body of work 
to illustrate the magnitude of change in fire-excluded forest 
landscapes and contemporary fire regimes. 

As summarized in this working paper, Hagmann et al. 
(2021) discussed differences between today’s fires and those that 
influenced forest landscapes before more than a century of fire 
exclusion. The authors also reviewed key changes in landscape 
structure and composition associated with the absence of abundant 
low- to moderate-severity fire effects and fires across a wide range 
of sizes, severities, and frequencies. The departures and changes 
described are derived from a multitude of studies that compared 
contemporary fires and forest landscape conditions to “reference 
conditions” (Box 1), i.e., those that existed, or in rare cases still 
exist, in the absence of human-caused fire exclusion. 

Hagmann et al. (2021) highlighted the value of 
incorporating a diversity of methods that span spatial and 
temporal scales — from trees to regions and from a single fire 
event to thousands of years (Box 2). By integrating across 
multiple methods and scales, we gain greater insight into 

4  Studies published since Prichard et al. 2021: Furniss et al. 2022; Knapp et 
al. 2021; Murphy et al. 2021; Restaino et al. 2019; Stoddard et al. 2021

variation in fire and forest conditions over space and time. We 
also gain greater confidence in our interpretations when they 
are re-affirmed by repeated studies based on records as diverse 
as Indigenous knowledge, oral accounts, tree rings, aerial 
imagery, pack rat middens, pollen and charcoal in sediment 
cores, and early surveys and inventories.

Throughout their review, Hagmann et al. (2021) also 
referenced the ways that computer models have been used to 
integrate a vast array of empirical, i.e., field based, studies to 
provide insights into fire and forest landscape conditions in 
places or at times where physical data is lacking or not yet 
available, e.g., the future. Landscape models combine fire 
histories with knowledge about the geophysical drivers (e.g., 
climate, topography, soils) of fires and vegetation growth 
and decay to inform simulations of past, present, and future 
landscape-wildfire dynamics. Perhaps most importantly, these 
models can inform and evaluate management scenarios. They 
can be used to simulate multiple climate, management, and 
species scenarios that can then be compared with simulated 
historical conditions under a consistent framework to evaluate 
risks, tradeoffs, synergies, and uncertainties.

Changes in Fire Regimes
As physical evidence of a fire event, tree-ring fire scar records 
remain a primary means of exploring historical fire ecology 
within the lifespan of long-lived trees. Over time, the methods 
for evaluating tree-ring fire scar records have been repeatedly 
tested and refined to yield greater confidence and insights into 
historical fire regimes. Today, networks of fire-scar studies 
emerging from a century of tree-ring studies enable insights 
into landscape and climate controls on fire. Because tree-ring 
fire scar records are quite simply more abundant in areas 
where subsequent disturbance, e.g., high-severity fire, has 
not obliterated them, other records and methods supplement 
tree-ring fire scar records to evaluate evidence of moderate- to 
high-severity disturbances. 

One of the key findings to emerge from nearly every 
tree-ring reconstruction of fire history in western North 
America was a widespread reduction of fire in the 20th century 
compared to preceding centuries (Figure 2). In some studies, 
sedimentary charcoal records from the same locations were 
used to extend the time span of tree-ring records. These 
studies showed that 20th-century decreases in fire events were 
unprecedented for thousands of years.

When fire is excluded from fire-dependent ecosystems, 
tree density increases; the proportion of fire-intolerant species 
increases; surface, ladder, and canopy (i.e., the fuels from 
forest floor to treetops) fuels accumulate; and resources 
available for forest growth decline. These conditions can 
foster large and intense fires with effects that have not been 
observed in historical ranges. Indeed, numerous studies 
of recent fires have documented more abundant and larger 
patches of high-severity fire than historically occurred in 
forest that once supported predominantly low- to moderate-
severity fires. Even in forest types that were historically 
dominated by infrequent high-severity fire, the suppression 
of most fire starts and the absence of fires spreading in 
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Figure 3. Repeat photography shows change 
in forest cover during the current era of fire 
exclusion and suppression in hills west of 
Boulder, Colorado (Veblen and Lorenz 1991). In 
less than a century (1910-1985), once sparsely 
forested hills became densely forested as trees 
established and forest cover expanded into 
grasslands. Photo credits: 1900-1910: Louis C. 
McClure Courtesy Denver Public Library, Western 
History Collection, MCC-306, 1985: TT Veblen and 
DC Lorenz, 2016: TT Veblen.

Figure 4. Top photo: View from atop Slate Peak in northeastern Washington, looking southwest, 1934, George Clisby 
photograph, National Archives at Seattle. The 1934 panoramic view shows extensive evidence of prior wildfires, varied 
age classes of cold forest, and recently burned and recovering areas. In the same view nearly eight decades later (bottom 
photo, 2013, John Marshall Photography), note the complete absence of recent fire evidence, widespread ingrowth creating 
denser forests, loss of nonforest, and lack of forest successional heterogeneity.
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Forests and fire regimes are highly variable, 
complex, dynamic systems. To communicate about 
them in general terms to broad audiences, we rely 
on commonly used terms, like those listed below. 
These terms enable conversations because they 
reduce enormous variability into broad categories. 
However, for the same reason, they can also inhibit 
conversations (and potentially agreement) when 
more nuance could add clarity.

Fire severity
Severity, only one aspect of a fire regime (Hessburg 
et al. 2021: Table 1), commonly refers to the 
percentage of tree biomass killed by fire. However, 
these same categories (low-, moderate-, and high-
severity) are also used to quantify other fire effects, 
e.g., the impact of fire on soil conditions. Thus, it is 
essential to ensure that the same metrics are used in 
comparisons of fire severity.

Percentage of basal area (area occupied by trees) or 
canopy cover killed by fire:
• Low: <20% 
• Moderate: 20-70%
• High: >70%

Dry, moist and cold forest types
Fire-dependent forests across a region as large and 
diverse as western North America (Figure 1) support 
a wide range of forest types composed of broadleaf 
and coniferous species. 
• Dry Forests: Dominant species include ponderosa 

and Jeffrey pine (Pinus ponderosa and P. jeffreyi) 
and some oak species (Quercus spp). 

• Moist Forests: As moisture increases or fire 
frequency decreases, species with higher shade 
tolerance and lower drought and fire tolerance 
increasingly dominate. These include Douglas-
fir (Pseudotsuga menziesii); western larch 
(Larix occidentalis); sugar, western white, and 
southwestern white pine (Pinus lambertiana, P. 

monticola, and P. strobiformis); incense-cedar 
(Calocedrus decurrens); and grand and white fir 
(Abies grandis and A. concolor). 

• Cold Forests: As mean annual temperatures 
decrease with elevation or cold air drainage, 
cold forests are increasingly dominated by 
lodgepole pine (Pinus contorta); aspen (Populus 
tremuloides); red, silver, and subalpine fir (Abies 
magnifica, A. amabilis, and A. lasiocarpa); 
mountain hemlock (Tsuga mertensiana); 
Engelmann spruce (Picea engelmannii); or 
whitebark pine (Pinus albicaulis). 

Reference conditions
The conditions that existed prior to (or, in rare cases, 
in the absence of) fire exclusion provide a baseline 
for evaluating the magnitude, rate, and direction of 
change associated with fire exclusion. 
• Timing of fire exclusion varied widely, but 

was commonly associated with disruption 
of Indigenous burning and expansion of 
unregulated grazing of livestock by European 
settlers.

• Often many decades after these early forms 
of fire exclusion, the onset of mechanized fire 
suppression, logging, and land development 
perpetuated the exclusion of fire. 

• Current conditions on sites with restored or less 
disrupted fire regimes also inform contemporary 
management focused on restoring resilience to 
drought and fire.

Resilience and resistance
• Resilience is the capacity of an ecosystem to 

return to prior conditions following a disturbance 
(including taxonomic composition, structure, 
ecosystem function, and process rates). 

• Resistance is a key component of resilience and 
reflects the capacity of an ecosystem to remain 
essentially unchanged when disturbed.

Box 1. Terms and Concepts

from adjacent forest and nonforest areas is likely changing 
contemporary fire-severity patterns.

Although relatively rare, landscapes not impacted by 
fire exclusion show us how fire-maintained forests operate 
under today’s climate conditions. These forests experienced 
the climate variations of the 19th and 20th centuries, but they 
did not exhibit the changes in structure and composition that 
occurred in fire-excluded forests. Similarly, these forests have 
not experienced the increased severity of disturbance events 
that occurred in comparable areas where fires have long 
been excluded. Lessons learned from these forests inform 
climate- and wildfire-adaptation strategies that incorporate 

fuel reduction techniques, including mechanical thinning, 
prescribed fire, and managed wildfire, to mitigate the 
deleterious impacts of human-caused fire exclusion.  

Changes in Forest Landscapes 
Numerous regional studies have synthesized and summarized 
more than a century of documentation of the impacts of fire 
exclusion (Table 1). Early studies generally focused on the 
influence of frequent fire in maintaining open-canopy forests 
and woodlands where fire-scarred trees, e.g., ponderosa or 
Jeffrey pine, were abundant. Increasingly, however, studies of 
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diverse landscapes that include colder and wetter forest and 
nonforest types show the influence of fires that historically 
burned some part of these fire-dependent landscapes with high 
frequency. The preponderance of evidence demonstrates that 
even if a particular area appears unchanged, fire exclusion 
has very likely changed the landscape surrounding it. In other 
words, both the abundance and continuity of fuels may be 
higher than historical levels across a landscape, although not 
necessarily for all areas within that landscape.

To illustrate the influence frequent fire can have across 
a range of forest and nonforest systems from dry to moist 
to cold, Hagmann et al. (2021) highlighted the Interior 
Columbia Basin Ecosystem Management Project (ICBEMP). 
The ICBEMP provided a landscape evaluation of change 
in vegetation spatial patterns and fire regimes across a 
uniquely large spatial extent (150 million acres). Landscape 
assessments that evaluate a broad range of attributes of 
forest and landscape conditions can reduce the risk of 

oversimplifying or misrepresenting historical variability 
in those conditions. This assessment encompasses the 
highest concentration of cold and moist forest in the interior 
western US (Figure 1). Nonetheless, the substantial changes 
documented in this assessment are consistent with those 
documented in numerous other studies both within this region 
and in predominantly warmer, drier ecoregions (Table 1). 

The ICBEMP documented widespread forest expansion and 
densification between the middle (primarily 1930s–1950s) and 
end (primarily 1990s) of the 20th century. Comparison of aerial 
photos from both time periods and simulation modeling based on 
those images were used to quantify change and identify drivers 
of change in forest and landscape structure and composition. 
Before fire exclusion, a combination of infrequent high-severity 
and frequent low- to moderate-severity disturbances kept total 
forested area lower than what could exist (and what does exist 
today) in the absence of disturbance. Further, the widespread 
distribution of forest and nonforest types with relatively low fuel 

Integrating multiple ways of knowing and a broad range of scientific methods increases our understanding 
of ecosystems and their functions. Additionally, consistent results from multiple independent evaluations 
using diverse methodologies and data sources strengthens our confidence in the inferences supported by 
those studies.

Every method used for reconstructing historical forest and fire conditions has strengths and weaknesses 
(ERI Working Paper No. 32: An Evaluation of Fire Regime Reconstruction Methods). 

These attributes influence the capacity of each method to provide detailed insights at specific spatial (tree, 
stand, landscape, or region) and temporal scales (one point in time, centuries, or millennia). 

Tree rings, for example, can provide highly detailed information about fire events for the recent past, 
typically 200–300 years. Charcoal and sediment records can provide insight into forest composition and 
variation in fire regimes further back in time, but at much coarser spatial and temporal scales. Neither of 
these records document detailed spatial patterns, e.g., the shape and size of unique forest and nonforest 
types. Aerial imagery can reveal patterns in forest structure and composition at multiple spatial scales, 
however, the earliest images only date back to the 1930s. 

Evaluations that fail to consider variation over multiple spatial and temporal scales and multiple aspects of 
forest conditions and fire regimes may mislead interpretation of historical conditions and resilience to fire 
and drought. 

Studies conducted at plot or patch-scales may fail to capture change in vegetation conditions and fire 
severity across larger landscapes. For example, changes in one or more aspects of a fire regime, e.g., 
percent land affected by high-severity fire, may not be evident in all locations in a larger landscape. The 
inverse is also true. Changes at fine spatial scales may be masked when only average values at larger scales 
are considered. 

Similarly, while one aspect of a fire regime may not have changed, e.g., percentage of the land area affected 
by high-severity fire, changes in patch size and shape, which strongly influence ecosystem functions, may 
have occurred. 

Thus, it is essential to integrate multiple scientific methods and scales with other sources of knowledge to 
generate a comprehensive and robust understanding of the role of fire over time.

Box 2. Multiple Methods Strengthen Confidence and Provide Insights

https://cdm17192.contentdm.oclc.org/digital/collection/p17192coll1/id/767/rec/15
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loads tended to support lower intensity fire across the landscape 
under most weather conditions (Figure 5). 

By the late 20th century, forest cover had become denser 
and more extensive than it was in the mid-20th century. These 
changes were apparent despite extensive logging in the mid to 
late 20th century and the impacts of fire exclusion before the 
mid-20th century. By the late 20th century, the area likely to 
support fire regimes of low-severity had been reduced by 53%, 
mixed-severity remained roughly the same (although it shifted 
to sites that had supported low-severity fire regimes prior to fire 
exclusion), and high-severity nearly doubled (Figure 5).

Other studies in cold forests that documented changes 
associated with fire exclusion include: lodgepole pine in the 
foothills of the Rocky Mountains in Alberta and in cold-air 
drainages in the central Oregon Pumice Plateau ecoregion; 
mixed-conifer and subalpine forests in the Canadian Cordillera 
and southwestern US; and red fir forests in California’s Sierra 
Nevada ecoregion. Additionally, today’s increased surface fuel 
loads and canopy connectivity in mid-elevation forests likely 
influence the frequency of crown fire spread into more mesic 
and colder high-elevation forests.

Repeat photography from other regions across western 
North America also show the expansion and densification of 
forest area and the consequent reduction in open-canopy forest 
and nonforest areas associated with fire exclusion. Examples 
include high-elevation ecosystems in the Pecos Wilderness, New 
Mexico; pine and mixed-conifer forest over 250,000 acres in 
northern Sierra Nevada, California; ponderosa pine in the Black 
Hills, South Dakota and Colorado Front Range; and widespread 
change across elevations in the Canadian Rocky Mountains. 

Oblique and aerial imagery from the early to mid-20th 
century documented abundant nonforest cover in dry, moist, and 
cold forest landscapes. The William Osborne survey of Oregon 
and Washington in the 1930s–1940s (Figure 4) encompasses 
nearly 1,000 panoramas (120°) taken on ridgetops and at fire 
lookouts, and the Geological Survey of Canada systematically 
collected approximately 120,000 high-resolution oblique images 
from 1880–1950 across the mountains of western Canada. 

The nonforest areas influence the delivery of fire to 
adjacent forested areas. For example, fine fuels like grasses and 
long pine needles combust readily (i.e., flashy fuels) and can 
carry fire into adjacent, less combustible cover types. These 
flashy fuels may also impede fire spread as they are typically 
the first to recover moisture content in the hours after sunset. 
In addition to influencing the delivery of fire to adjacent areas, 
these fine-scale treeless openings (Figures 3 and 4), provided 
numerous functions, including nutrient cycling and fostering 
biodiversity. Increased forest cover and the loss of the once 
widespread nonforest and open-canopy conditions (Figures 
3 and 4) can substantially reduce the accumulation and 
persistence of snow packs and the amount of water available to 
downstream ecosystems.

Changes in High-Severity Fire
High-severity fire is an essential component of many forested 
landscapes. These fires contribute to the provision of unique 
habitat types, like areas with abundant snags (dead trees) and 
nutrient-rich shrub and herbaceous plant cover (flowers, seeds, 

and tender leaves). They also influence numerous other ecosystem 
functions, including nutrient and hydrological cycles and the rate 
and abundance of debris flow and sediment deposition. Landscape 
diversity maintained by characteristic disturbance regimes 
is critical to maintaining the diverse and unique ecosystem 
characteristics of seasonally dry forested landscapes.

Some of today’s conversion of forest to nonforest may aid 
climate and wildfire adaptation. This may be particularly true 
where forest expansion and densification in the 20th century 
degraded nonforest ecosystems, e.g., meadows and woodlands, 
or where conversions to more drought-tolerant cover types are 
inevitable as landscapes adjust to a warming climate. However, 
today’s fires burn in fire-excluded landscapes that lack the 
constraints historically imposed by abundant low- to moderate-
severity fire. As a result, abundance and patch sizes of high-
severity fire have been higher than historical values. These 
fires are contributing to type conversions on sites that would 
otherwise have been likely to maintain or regenerate forest 
cover even under a rapidly warming climate.

Figure 5. Broadscale (1-km2 pixel) map of transitions from historical 
(ca. 1800) to late 20th century fire-severity classes in the Interior 
Columbia Basin. Adapted from Hessburg et al. (2005).
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Increases in high-severity fire are further reducing the 
number and distribution of large and old (>150 years) fire- 
and drought-tolerant trees. These oldest of these trees thrived 
through seasonal and episodic increases in fire and drought 
for decades to centuries before fire exclusion. Large and old 
fire- and drought-tolerant trees were heavily logged in the 20th 
century. Their populations have continued to decline due to 
drought stress, bark beetle outbreaks, and wildfire. High forest 
densities exacerbate drought stress and facilitate bark beetle 
outbreaks, and in ponderosa and Jeffrey pine forests, bark 
beetles preferentially target larger individuals. Where old and 
large trees were once widespread in fire-dependent landscapes, 
today they are less abundant or absent and highly vulnerable to 
both fire and drought in fire-excluded forests.

Constraints on tree regeneration are an inevitable 
consequence of a warming climate. However, high-severity fire 
also limits forest regeneration. Reduced seed dispersal capacity 
and hotter, drier site conditions in large severely burned areas 
impedes conifer regeneration on sites where low- to moderate-
severity fire does not. Additionally, high-severity fires can 
have long lasting negative impacts on soil organic carbon and 
nutrient cycling.

Conclusion 
Excluding fire from fire-dependent forest landscapes for more 
than 100 years has radically altered fire regimes, structure 
and composition, and ecosystem functions. Long-term fire 
exclusion has compromised the capacity of fire-dependent 
forest landscapes to resist or recover after disturbance, 
especially in a rapidly warming climate. Fire exclusion has 
likely also impacted cold and wet forest and nonforest types 
either directly through forest densification and expansion or 
indirectly by influencing ecosystem functions, such as the 
delivery of fire and water. 

During recent droughts, increases in forest density and 
forested area have contributed to uncharacteristically high 
mortality of fire-resistant, drought-tolerant trees. Additionally, 
ignitions in forests with high fuel loads can overwhelm fire 
suppression capacity, especially during extreme fire weather 

(hot, dry, and often windy conditions). At those times, only 
a change in the weather will reduce fire intensity enough to 
allow fire fighters and the tools at their disposal to effectively 
manage wildland fires. 

Warmer, drier climates reduce the moisture content of both 
live and dead fuels, making them more flammable. As a result, 
area burned increases. Thus, despite increasing expense and effort 
focused on fire suppression, area burned has increased in the late 
20th and early 21st century as the climate warmed. This trend is 
expected to continue as the climate continues to warm. Currently, 
the area burned in most forested ecosystems is much lower than 
would be expected given the warmth of the current climate. This 
is due to ongoing policies that continue to favor fire suppression 
even when the weather conditions are conducive to managing fires 
to provide ecological, social, and cultural benefit.

Recapturing the once extensive influence of the low- and 
moderate-severity fires that shaped and maintained these 
ecosystems for millennia requires a paradigm shift from 
strategies favoring fire suppression to those that facilitate the 
use of fire when circumstances allow. As the climate continues 
to warm and burned area increases, high-severity burn area and 
early seral habitat will likely proliferate. However, maintaining 
and fostering a diverse mix of forest structures and ages 
may best be served through climate- and wildfire-adaptation 
strategies that incorporate ecologically based fuel reductions 
through the use of thinning, prescribed fire, and managing 
wildfires to further resource objectives. 

The cautious reintroduction of frequent low- to moderate-
severity fires can and has reduced the intensity and severity 
of subsequent fires by maintaining tree densities and live 
and dead fuel loads that are in synch with the prevailing 
climate. Enormous effort and expense have been invested 
in evaluating the advisability of restoring abundant low- to 
moderate-severity fire in the fire-dependent forest landscapes 
of western North America. Ongoing evaluation and refinement 
of implementation and effectiveness of these approaches is 
essential for any credible management strategy. Additionally, 
objective evaluation can aid us in differentiating warranted 
from unwarranted uncertainties and enable timely paradigm 
shifts to policies and management actions that favor fire- and 
climate-adapted forests and human communities.
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Table 1. A sample of the regional syntheses and meta-analyses that integrate insights from assessments of historical and contemporary forest and fire ecology.
These reviews reflect the use of multiple complementary methods across spatial scales, from individual trees to regions.

Region Description Citations

Western North 
America

More than 800 fire-scar studies documented abrupt decline in fire frequency in the late 19th 
century and provide ecological insights into variation in top-down and bottom-up drivers of 
historical fire regimes

Falk et al. 2011  
Swetnam et al. 2016  
Daniels et al. 2017

Substantial departures in contemporary fire regimes and live and dead vegetation patterns 
across dry, moist, and cold forested landscapes increase vulnerability of forest ecosystems 
to drought and fire

Hessburg et al. 2019

Evaluation of key aspects of the scientific evidence of the impacts of fire exclusion using a 
framework for objectively assessing change in the structure, composition, and fire regimes 
of seasonally dry, fire-excluded forest landscapes.

Hagmann et al. 2021

Canada
Development and paradigm shift in wildland fire research over past 50 years Coogan et al. 2020

Climate change impacts on fire regimes and impacts of contemporary fire regimes on social 
and ecological systems Coogan et al. 2019

Western United 
States (US)

Variation in fire activity over the past 3,000 years Marlon et al. 2012

Fire deficit relative to area expected to burn without fire suppression given contemporary 
climate 1984-2012; area burned and fire severity increased 1985-2017

Parks et al. 2015  
Parks and Abatzoglou 2020

Influence of traditional tribal perspectives on ecosystem restoration Long et al. 2020 
Roos et al. 2021

Correspondence between conifer species traits conferring fire resistance and independent 
assessments of historical fire regimes Stevens et al. 2020

Human influence on contemporary fire regimes Balch et al. 2017

Evaluation of conifer regeneration up to 69 years post fire Stevens-Rumann and Morgan 2019

Colorado and 
Wyoming Front 
Ranges

Historical and contemporary ecology of ponderosa pine and dry mixed-conifer forests Addington et al. 2018

Fire regimes in ponderosa pine forests McKinney 2019

Historical and contemporary ecology of selected national forests
Dillon et al. 2005 
Meyer et al. 2005a, 2005b 
Veblen and Donnegan 2005

Southwestern US Historical and contemporary ecology of ponderosa pine and dry mixed-conifer forests and 
forest-grassland landscape complexes

Reynolds et al. 2013 
Dewar et al. 2021

Sierra Nevada 
bioregion of 
California

Historical and contemporary ecology of ponderosa and Jeffrey pine and mixed-conifer 
forests

SNEP 1996 
North et al. 2009, 2016 
Safford and Stevens 2017 
van Wagtendonk et al. 2018

Historical and contemporary ecology of red fir and subalpine forest types Meyer and North 2019 
Coppoletta et al. 2021

Northeastern 
California plateaus Historical and contemporary ecology of dry conifer forests Riegel et al. 2018 

Dumroese and Moser 2020

Northern California Historical and contemporary ecology of forested landscapes

Skinner et al. 2018 
Spies et al. 2018, 2019 
Stephens et al. 2018b, 2019 
Bohlman et al. 2021

Pacific Northwest

Departures in contemporary fire regimes
Reilly et al. 2017 
Metlen et al. 2018 
Haugo et al. 2019

Historical and contemporary ecology of ponderosa pine forests in Oregon and Washington; 
vulnerability of contemporary forests and expanding wildland urban interface to increasing 
drought and fire severity

Merschel et al. 2021

Historical and contemporary ecology of moist mixed conifer forests in seasonally dry 
landscapes in Oregon, Washington, and Northern California

Perry et al. 2011 
Stine et al. 2014 
Hessburg et al. 2016

Columbia 
River Basin in 
northwestern US

The Interior Columbia Basin Ecosystem Management Project (ICBEMP) used standard aerial 
photogrammetric methods, repeat photo-interpretation, and a quantitatively representative 
sampling scheme to build a dataset of wall-to-wall, meso-scale landscape reconstructions for 
337 watersheds, mean area 9500 ha. ICBEMP also incorporated broad-scale succession and 
disturbance simulation modeling calibrated with the meso-scale results

Lehmkuhl et al. 1994 
Huff et al. 1995 
Hann et al. 1997 
Hessburg et al. 1999, 2000, 2005 
Wisdom 2000 
Raphael et al. 2001 
Hessburg and Agee 2003 
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